
Scatter Protocol: An Incentivized and Trustless
Protocol for Decentralized Federated Learning

1st Samrat Sahoo
Georgia Institute of Technology

Financial Services and Innovation Lab
Atlanta, USA

samratsahoo@gatech.edu

2nd Sudheer Chava
Georgia Institute of Technology

Financial Services and Innovation Lab
Atlanta, USA

chava@gatech.edu

Abstract—Federated Learning is a form of privacy-preserving
machine learning where multiple entities train local models,
which are then aggregated into a global model. Current forms of
federated learning rely on a centralized server to orchestrate
the process, leading to issues such as requiring trust in the
orchestrator, the necessity of a middleman, and a single point
of failure. Blockchains provide a way to record information on a
transparent, distributed ledger that is accessible and verifiable by
any entity. We leverage these properties of blockchains to produce
a decentralized, federated learning marketplace-style protocol for
training models collaboratively. Our core contributions are as
follows: first, we introduce novel staking, incentivization, and
penalization mechanisms to deter malicious nodes and encourage
benign behavior. Second, we introduce a dual-layered validation
mechanism to ensure the authenticity of the models trained.
Third, we test different components of our system to verify
sufficient incentivization, penalization, and resistance to malicious
attacks.

Index Terms—Blockchains, Distributed Systems, Federated
Learning, Smart Contracts, Ethereum, Tokenization

I. INTRODUCTION

With the rise of artificial intelligence - particularly through
foundation models - researchers, companies, and other entities
alike have become increasingly reliant on data and compute
power. One way to extend the limits of the amount of data
and compute that can be used for training models is through
federated learning. Federated learning is a form of collab-
orative machine learning where multiple entities aggregate
locally trained weights into one global model. With federated
learning, models are trained with data privacy in mind - this
means that each entity has a local dataset that is not exposed
to the rest of the participants, which is used to train the
model. Current approaches with federated learning require a
centralized authority to orchestrate the process and validate the
model. Centralized federated learning results in local entities
needing to be able to trust a single authority to ensure the
validity of the process (i.e. models are trained properly, models
are aggregated properly, etc.), introducing inefficiencies. This
causes three issues:

• A necessity of a root of trust, which, in turn, inhibits
federated learning from being used across entities who
do not trust each other.

• A single point of decision-making that is prone to failure
or malicious acting.

• A lack of incentives to participate in federated learning
due to the aforementioned shortcomings.

A common alternative approach to centralized federated learn-
ing is decentralized federated learning. Decentralized federated
learning is when a system of nodes are able to coordinate
themselves to obtain a global model without the help of
a middleman or orchestrator. The process of decentralized
federated learning can be done in many ways.

We propose a blockchain-based protocol for decentralized
federated learning that integrates smart contracts into the
federated learning process to create a trustless environment
while incorporating decentralized validation and incentiviza-
tion layers. Our system has four primary roles: requesters,
trainers, validators, and challengers. The high-level overview
of our system works as follows: first, requesters will request
a specific model to be trained by publishing a training job.
Next trainers agree to train a model based on the data they
have. After, all the trainers have trained a model or the
training job terminates, validators will validate the model via
a consensus and a validation job published by requesters.
Finally, challengers can challenge nodes that may conduct
fraudulent actions during the federated learning process. Each
role has associated tokenomics - a general term referring to
economic systems revolving around a token - via staking,
taxes, and lottery mechanisms, which incentivizes all net-
work participants to act benevolently. We publish data to the
blockchain via smart contracts to act as the unified source of
truth for all the transactions that occur on our network.

This work can reduce some of the inefficiencies associated
with centralized federated learning. More specifically, our
contributions to alleviate issues with federated learning are
as follows:

• We mitigate the necessity of trust, middlemen, and a
single point of decision making to instead rely on a
distributed quorum based voting mechanism to facilitate
the process of federated learning.

• We introduce multiple layers of decentralized validation -
first through validators, and second through challengers -
to determine whether transactions and nodes on our pro-
tocol are valid, reinforcing the protocol’s ability enable
authentic federated learning.



• We implement a tokenomics system that takes advantage
of staking, tax, and lottery mechanisms to reward par-
ticipating nodes in the network based on performance,
minimizing malicious behaviors in federated learning.

II. RELATED WORKS

Federated learning is currently an active area of research due
to its benefits in privacy, distributed compute and data, and
model aggregation. For this work, we look at four primary
areas of related work (1) blockchains and smart contracts,
(2) malicious node detection, (3) model validation, and (4)
incentivization mechanisms.

A. Blockchains and Smart Contracts

Smart contracts are pieces of code that can be executed
on a blockchain. Both smart contracts and blockchains are
completely transparent, permissionless, and verifiable by any
entity. We leverage these properties to implement our incen-
tivization, validation, and voting mechanisms.

Prior works explore the idea of applying blockchains and
smart contracts for decentralized federated learning infrastruc-
ture. Work by [1] explored how we could use smart contracts
to address challenges such as model validation, transaction
transparency, and model leaks. To address incentivization,
they introduced the idea of using blockchain-native tokens to
reward nodes based on performance [1]. Blockchain-native to-
kens governed by smart contracts enable easily implementing
incentivization mechanisms while presenting a deterministic
and permissionless method to distribute tokens (as defined by
the smart contract). Their work with incentivization schemes is
further substantiated by Cachin and Vukolic and Yu et al., who
also conceptualized alternate decentralized, federated learning
systems with a focus of incentivization [2][3].

B. Malicious Node Detection

In decentralized systems, malicious actors are inevitable.
Being able to identify and punish malicious actors in the
context of federated learning is central to the success of
the protocol. Having malicious node detection mechanisms in
place will disincentivize malicious actions.

Prior work by Dong et al. explores the idea of malicious
node detection by utilizing a voting mechanism and proof-of-
stake mechanisms as insurance against malicious nodes [4].
Their works leverage the ideas from aforementioned voting
mechanisms to ensure malicious nodes are voted out and the
network stays as malicious-free as possible.

On the other hand, work by Zhu et al. looks at deterministic
malicious node detection by converting a gradient space into
a ranking matrix. From this, they calculate the mean and
standard deviations of the ranking matrix and apply a K-means
clustering algorithm to predict where the benign and malicious
cluster nodes are (with the assumption that the largest cluster
consists of benign nodes) [5].

C. Model Validation

With decentralized learning, being able to ensure that the
models that were trained are valid is necessary for adoption.
To do this, we can utilize model validation mechanisms to
determine a model’s legitimacy and, as a result, punish or
incentivize a specific node.

Research by Chen et al. introduces a framework for de-
centralized model validation via voting mechanisms [6]. This
framework works by having validators perform one epoch
of local training on the global model. The test dataset is
run through these models and the accuracies of the global
and local models are compared to see if the difference in
accuracies is below a specific threshold. A vote is then cast
by the validators on whether a model has been distorted. By
leveraging consensus, decentralized systems can maintain a
trustless state while adding a robust validation layer.

Another approach to model validation was taken with zero-
knowledge proofs - a mechanism that enables an entity to
prove a statement without revealing any additional informa-
tion. Work by Heiss et al. and Xing et al. both leverage
zero knowledge proofs to create arithmetic circuits (a set of
constraints that prove a computation was carried out correctly)
to prove that a model that was trained in a valid way [7][8].
They note there are some bottlenecks to be considered with
the size and computational power required to create zero-
knowledge proofs.

D. Incentivization Mechanisms

For decentralized protocols, we require forms of incentiviza-
tion to ensure that actors are inclined to act benevolently and
avoid malicious behaviors.

Research from Tu et al. explores forms of incentivization
used in federated learning. One such reward function is self-
report based contribution evaluation which the participants
proactively report their contributions to the process [9]. This
however requires trust and is therefore is found more in cen-
tralized federated learning schemes as opposed to decentral-
ized schemes. Work by Zhu et al. looks at the Shapley Values
function which fairly evaluates a participant’s contribution to
a coalition by looking at the impact their contribution has to
the goal. However, the author notes there are limitations with
utilizing Shapley Values for decentralized federated learning
because it requires a trusted entity to properly calculate the
value [10].

III. PROTOCOL DESIGN

A. Protocol Overview

Our work provides an end-to-end protocol and set of rules
for incentivization, penalization, validation, and consensus for
decentralized federated learning. Our protocol takes the format
of a marketplace with four different roles:

• Requester: Requesters are the ”buyers” of the market-
place. They request specific training jobs to be completed
and also provide reward with the training job. The reward
has no lower or upper bound because participation is
voluntary amongst nodes.



• Trainer: Trainers are the core worker nodes and pri-
mary ”sellers” of the marketplace. They provide local
datasets and compute power to train local models for the
requesters in exchange for tokens.

• Validator: Validators are the first layer of validation in
the protocol. Their role is to take models trained by
trainers and determine the validity of the models.

• Challenger: Challengers are the final layer of valida-
tion before a training job is complete. Challengers can
challenge any part of the process which can be checking
whether a model is valid, whether a validation is valid,
and even can challenge other challenger nodes who may
publish incorrect challenges.

In essence, our protocol’s general workflow can be simpli-
fied down into eight steps:

1) Requesters interact with the blockchain by publishing a
training and evaluation job for a specific topic (a topic
representing what they want the model to do - i.e., a
classification model for numbers).

2) Trainer jobs read the topics on the blockchain and
inspect the jobs. If they see a topic they can complete,
they can choose to subscribe to it.

3) A requester can choose to kick off the training job at
anytime before a time threshold (a fixed predetermined
time set by our protocol). After the time threshold has
passed, any node in the network can kick off the training
job.

4) Once a trainer has completed its training job, it encrypts
the model data and publishes the models to the Inter-
planetary File System (a decentralized storage system)
for validators to inspect.

5) Once all trainers have published a model, the validators
will start validating the models and publish scores to the
blockchain. The validators request a decryption key from
the trainers to decrypt the model data before validating.

6) After validations have occurred, challengers can analyze
node behavior and transactions to determine whether
there were any malicious nodes and publish these results.

7) The protocol will then distribute rewards based on the
performance and behaviors of nodes (as outlined in
III-B)

8) The requester reads model data from the blockchain
and aggregates them into one model. The responsibility
of model aggregation and the aggregation algorithm of
choice (i.e. FedAvg, FedSoftBetter, FedWorse, etc.) is
left to the requester. [11].

B. Incentivization and Penalization

To implement incentivization and penalization mechanisms,
we use Ethereum Request for Comment-20 (ERC-20) tokens -
a standard in Ethereum that enables us to make our own token
systems - to implement a protocol currency: scatter tokens. The
total supply of our scatter tokens is set to N . Each training
job transaction on the network has a tax rate set at Dtx. The
transactions build a token pool to be used in other areas of
the protocol. We also have distribution rates for both trainers,

Dtr and validators, Dv that specify the proportion of a training
job’s reward pool that goes to trainers and validators. We can
summarize the rates as follows:

Dtx +Dtr +Dv = 1 (1)

Requesters on the network are subject to two rules. First
requesters must provide some reward for each training job they
create. If we denote the reward pool to be Rp, the amount of
reward taken as tax to be Rtx, the rewards given to trainers
as Rtr and rewards given to validators as Rv , the total reward
pool can be represented as:

Rp = Rtx +Rtr +Rv (2)

The protocol takes on a Dtx tax rate and we can represent the
tax amount as follows:

Rtx = Rp ·Dtx (3)

Secondly, if a requester is found to be malicious, the reward
that they have allocated is equally distributed amongst training
job participants with no returns.

Finally requesters are given some security assurance in the
scenario that trainers and/or validators do not fulfill their roles.
In the scenario that 100 percent of trainers and 100 percent
of validators are found to be malicious, then requesters get
a complete refund on their training job transaction (with the
exception of the protocol-wide tax).

The tokenomics of trainers introduces a system that encour-
ages proper training of models. To participate in a training job,
trainers are required to stake - a mechanism commonly used
in blockchains where tokens are locked into the protocol as
collateral for additional privileges - any amount of tokens.
The unbonding period - the period of time an entity must
wait before being able to unstake tokens from the protocol -
of the tokens is the lifetime of the training job. So, as long
as the training job is active the tokens cannot be unstaked.
In the scenario where a trainer is found to be malicious,
they lose all tokens that they have staked. By introducing a
short term staking mechanism for trainers, we achieve two
things: 1) trainers are now risking tokens and therefore are
more incentivized to train better models and 2) we can reward
trainers accordingly based on how much stake they have
decided to dedicate to a specific training job.

For our reward function, given a pool of trainers T =
{t1, t2, . . . , tk} we can define W t

stj as the stake amount for
the jth trainer node and W t

scj for the average validation score
of the jth trainer node (as determined from the validators). We
can define the reward function for a trainer i, Rti , as follows:

Rti =

√
W t

sti ·W
t
sci

2

∑k
j=1

√
W t

stj ·W t
scj

2
·Rtr (4)

We can decompose this reward function into two parts. The
first part calculates the proportion of the reward pool allocated
to trainers that should go to trainer i. We do this by calculating
a reward score,

√
W t

sti ·W
t
sci

2, and dividing it by the sum of



all reward scores. The reward score composition ensures there
is incentive for trainers to both stake tokens into a specific
training job and train a robust model. We square root the stake
to avoid a scenario where trainers with large amounts of stake
do not completely dominate the distribution of the rewards and
ensures diminishing marginal returns for large stake amounts.
We also take an achievement-based approach by squaring
the average validation score to more heavily weigh trainer
performance [12]. The second part of our reward function
calculates the amount of the reward pool that should go to
trainers (Rtr). We can express this as a product of the reward
pool and the trainer distribution rate:

Rtr = Rp ·Dtr (5)

Validators are subject to a long-term staking requirement
of Sv tokens. These tokens have an unbonding period for a
protocol-specified time period of τv . For our reward function,
given a pool of validators, V = {v1, v2 . . . vk}, we can define
the stakes for an arbitrary validator, i, to be W v

sti . We define
our reward function for validator i, Rvi , as follows:

Rvi =
W v

sti∑k
j=1 W

v
stj

·Rv (6)

This reward function is entirely based on stakes. Because
each validator performs the same amount of work, there is
no performance factor like there was in the trainer reward
function. By keeping the reward function entirely based on
stakes, it encourages validators to stake more tokens to support
the protocol. Similar to the trainers, this reward function
calculates a proportion of the total reward pool for validators
(Rv) to give out. We can express this as follows:

Rv = Dv ·Rp (7)

Because validators can also be malicious, we design a penal-
ization function that penalizes validators based on number of
previous penalties. Given a validator, i, with a stake amount of
S, we define a base penalty, Pb, a penalty multiplier Pm, and
the penalty count of this specific validator as Pc. We calculate
the penalty for validator i, Pvi , as follows:

Pvi =

{
Pb · Pm

Pc , if Pb · Pm
Pc ≤ S

S, if Pb · Pm
Pc > S

}
(8)

This function discourages subsequent malicious behaviors for
validators by introducing increasing marginal costs for each
additional malicious behavior committed. When a validator’s
stake reaches zero, it automatically loses validator privileges.

Challengers, like validators, are also subject to a long-term
staking requirement of Sc. These tokens have an unbonding
period for a protocol-wide specified time of τc. All challengers
are racing to compete for a lottery (which is accumulated from
the taxes collected). On a successful challenge, the challenger
will receive the tokens from the lottery. Challengers can also
be challenged themselves - in this scenario, challengers follow
the same penalty function imposed on validators in equation
8.

TABLE I: PROTOCOL TOKENOMICS PARAMETERS

Paramter
Name

Paramter
Symbol

Parameter
Value

Token Supply N 100 Billion Tokens
Tax Rate Dtx 0.10 (10%)

Trainer Reward Rate Dtr 0.70 (70%)
Validator Reward Rate Dv 0.20 (20%)

Validator Staking Requirement Sv 25000 Tokens
Validator Unbonding Period τv 30 Days

Challenger Staking Requirement Sc 20000 Tokens
Challenger Unbonding Period τc 30 Days

Base Penalty Pb 200 Tokens
Penalty Multiplier Pm 2

We define the parameters for our protocol’s incentivization
scheme. Our implementation of the protocol sets the parameter
values as defined in Table I.

C. Smart Contract Architecture

Our protocol consists of seven different smart contracts that
define the behavior of the system.

• Training Job Token: Allows requesters to publish and
map ownership of each training job.

• Evaluation Job Token: Allows requesters to publish and
map ownership of each evaluation job.

• Model Token: Allows trainers to publish the encrypted
models and map ownership of each model.

• Reputation Manager: Manages the reputation of dif-
ferent nodes in the protocol and allows us to determine
malevolent and benevolent nodes for each training job.

• Vote Manager: Manages votes, primarily for validation
for validators and challengers.

• Scatter Token: Implements protocol-native tokens which
are used for transactions to facilitate rewards and punish-
ments.

• Scatter Protocol: A state-management proxy contract
that directs requests to different contracts and manages
the state of the protocol.

D. Model Validation and Consensus

Our protocol implements a validation layer through valida-
tors. Validators rely on governance (via voting) to determine
whether specific models are valid or invalid. How this val-
idation layer works is that each job will have a proportion
of the validators, Vprop, assigned to each training job using
the Fisher-Yates shuffle algorithm. We use block timestamp,
difficulty, and a random nonce to introduce stochasticity [13].

Once the models are ready for validation for the validators,
the smart contract emits an event indicating that all models
have been uploaded and the validators can start validating
models using the given evaluation job and submitting evalua-
tion scores. The evaluation job comes with an associated eval-
uation dataset (also provided by the requester). This dataset
is published after the trainers have submitted their models to
prevent trainers from exploiting the evaluation job by training
their models directly on the evaluation dataset.



We allow validators to continue to submit scores until a
minimum number of validators have voted, Qc (this is the
quorum count). Once the quorum count has been reached, the
average score for each model is calculated and if it is above
the validation threshold (set by the requester when submitting
a job), then it is accepted, else rejected.

Another area where validators rely on consensus is when
a requester submits a malicious evaluation job (i.e., the eval-
uation job contains code that is deemed malicious). In this
scenario, the validator can refrain from conducting an evalua-
tion. If a super-majority of validators (two-thirds) refrain from
validating, then all validators are compensated. Otherwise
validators that refrain without a super-majority, are neither
rewarded nor punished. Validators are given the authority to
determine whether a requester is malicious because valida-
tors are chosen at random for each training job. Therefore
validators could be a target for malicious training jobs from
requesters to avoid having to pay a portion of the rewards out
as seen in the scenario in section IV-D. Trainers on the other
hand do not have this authority because trainers can inspect
all training jobs before they commit to them.

Our secondary validation layer with challengers leverages a
different governance mechanism to achieve consensus - when
a challenger decides it would like to challenge the results of
a node, all challengers are signaled to vote on whether a node
is fraudulent (a binary yes or no decision). In order for a
challenge to to be accepted, at least two-thirds of challengers
must reach a consensus on the decision. Because challengers
are the last line of defense before a training job reaches
finality and challengers have the highest earning potential if a
challenge is successful, we require a supermajority.

E. Client Node Architecture

We provide a client node that participants can run to interact
with the protocol and run training jobs from the protocol. Our
client node has the following components:

• HTTP Server: The HTTP server is the main entry-point
to interact with the node that allow actions like creating
a training job, joining a training job, and starting the
training procedure for a specific training job, etc.

• Peer-to-Peer Server: The peer to peer server is used for
inter-peer communication. Because the blockchain is a
medium of completely transparent and public exchange,
it is difficult to share private information directly. We
use a peer-to-peer server to facilitate communication for
private information.

• Asynchronous Job Queue: We anticipate trainer nodes
to subscribe to multiple training jobs at once. To handle
these jobs, we created an asynchronous job queue that
executes training jobs from a job pool, allowing for better
scalability.

• Protocol Event Listeners: The smart contracts emit
various events that participants need to react to so we
provide an event listener module that listens to events
emitted from the blockchain and conducts an action
accordingly.

• Datastore: Our node relies on a datastore to save training
job or evaluation job information to reference in later
parts of the federated learning process.

Fig. 1: Node Architecture of Scatter Protocol Node

Figure 1 is a high level overview of the client node
architecture.

This is just one implementation of a potential client node.
The permissionless nature of the protocol enables anyone to
create their own client node implementation and interact with
the protocol directly.

F. Security

Security in our system is introduced both at the protocol
level as well as the node level.

At the protocol level, we leverage our incentivization and
penalization mechanisms as outlined in III-B to discourage
malevolent behavior like publishing malicious training jobs.
Our smart contract also accounts for common smart contract
attacks like reentrancy attacks and overflow/underflow attacks
[14].

At the client node level, we enforce security through three
channels: training job runtime, data, and peer communication.
For our training job runtime environment, we rely on Docker
containers which provides a level of isolation with each con-
tainer having its own file-system, process space, and network
interface. We also leverage the Open Container Initiative (OCI)
runtime through gVisor which provides a seperate operating
system kernel and virtual machine monitor. It intercepts system
calls, enabling greater isolation between the application and
the host operating system [15].

We also implement encryption standards by encrypting
models that are published to the blockchain using Advanced
Encryption Standard-256 (AES-256). Due to asynchronous
nature of the protocol, trainers can publish their models at
different times. In the case that one trainer publishes their
model before another, the one that has not published the model
could publish the other trainer’s model without performing the
computational work. To prevent this, we encrypt the model
using AES encryption. When the validator is ready to evaluate
a model, they request the decryption key before validating it.

Another security concern arises with communicating the
decryption key over the peer-to-peer server. We leverage



the Noise Protocol framework via the LibP2P library which
enables us to create secure and authenticated channels of
communication between two peers [16]. This ensures that we
can securely share the decryption key with other peers.

IV. EVALUATION AND RESULTS

To evaluate our system, we focused on simulating different
scenarios to determine how the tokenomics and protocol logic
behaved. They are representative but not intended to be the
exhaustive set of possibilities. To evaluate these, we run sim-
ulations on a custom built simulation software which allows
us to run and control the actions of nodes. Our simulations
used 12 nodes (one requester, six trainers, three validators,
two challengers) to complete 10 training jobs. Each node had
100,000 scatter tokens staked. The number of malicious and
benevolent nodes varies from simulation to simulation.

A. All Benevolent Nodes

Our first scenario is when all trainers and validators are
benevolent. Figure 2 illustrates the token supplies for the train-
ers, validators, and challengers. We notice trainers periodically
lose some amount of token supply. This is due to the short-
term stake on a training job basis that was described in section
III-B which is returned to them at the end of the training
job. Because of the consistently benign behavior, trainers have
a token supply above their initial token supply. With the
validators, we initially see a large drop off due to the required
stake to become a validator but after that, the validators slowly
accumulate tokens, also demonstrating profitability from the
validator standpoint. Finally, with challengers, we see that
there is an initial drop off due to the stake (similar to valida-
tors) but there is no increase in token supply because all nodes
are acting benevolently and hence there is no opportunity to
win the lottery.

Fig. 2: Token Supplies for Benevolent Trainers and Validators
(Section IV-A)

B. Partially Malicious Trainers

Our second scenario occurs when we have some malicious
trainers, some benevolent trainers, and all benevolent valida-
tors. We designate three of our trainers as malicious and three
as benevolent. We can see the token supplies over time in
Figure 3. For this scenario, we notice that the trainers who
are not malicious have their token supply increasing from the
rewards of the training job. On the other hand those who are
malicious have their token supply decreasing because they
lose the stake they’ve invested into the protocol for being
malicious. Validators continue to slowly earn rewards as well
as they are still acting as intended. Challengers do not earn
rewards here, even if they help with identifying a node as
malicious because validators are given priority for malicious
node identification and hence identify the malicious trainers
first. This ensures challengers do not reap rewards for marking
a trainer as malicious just because a validator does (i.e., a
challenger is required to actually put in computational work
to determine the validity of a trainer).

Fig. 3: Token Supplies for Partially Malicious Trainers and
Benevolent Validators (Section IV-B)

C. Partially Malicious Validators

Our third scenario occurs when we have all benevolent
trainers and some malicious validators, and some benevolent
validators. We designate one of our validators as malicious and
two validators as benevolent. We can see the token supplies
over time in Figure 4a. If we look at the trainers, because
they are all benevolent, their token supplies allow a profit over
time. With the validators, we notice that one validator has a
stagnant token supply. That is the malicious validator and has
been identified as malicious by the challengers and therefore
does not earn a reward. On the other hand, the two benevolent
validators continue earning rewards. The challengers also see
an increase in token supply but at a much steeper rate than
any other nodes. This is because challengers are winning
tokens from the lottery mechanism. The challenger that starts
the challenge for a specific node first and is successful is



(a) Token Supply (b) Stake Amount (c) Lottery Supply

Fig. 4: Token graphs with partially malicious validators and benevolent trainers (Section IV-C).

the winner of the lottery, which is also demonstrated in
Figure 4a. We also notice that the trainers continue to make
a profit despite malicious validators. This is attributed to
the fact that when a validator is marked as malicious, their
evaluations are omitted when determining which trainers have
acted maliciously.

We also notice that the fraudulent validator has a constant
token supply. This is because the punishment is taken out from
the validator’s protocol stake, not the node’s token supply.
Figure 4b demonstrates how this stake decreases exponentially
with every subsequent penalty (the penalty function is defined
in section III-B). Once the stake reaches zero, that validator
loses privileges to evaluate models.

In Figure 4c, we notice that the lottery supply has periodic
spikes and the magnitude of these spikes increase. The lottery
is determined by a variety of factors like protocol taxes, train-
ers stakes, and validator stakes. Because the validator stake
penalty increases exponentially, the amount that is transferred
to the lottery with each penalty increases at that same rate. This
lottery is then transferred to the challenger who discovered the
malicious validator, leading to the spikes observed.

D. Malicious Trainers and Validators

The fourth scenario is when all trainers and validators are
malicious. In figure 5 We notice that in this scenario that
challengers are receiving the maximum profit. The large profits
can primarily be associated from two factors 1) lost validator
stakes and 2) lost trainer stake. Because both trainers and
validators are losing their stakes to the lottery for being mali-
cious, this is when challengers are able to earn the maximum
profits while maintaining in the integrity of the network. If the
requester has 100 percent of validators and trainers fail, then
it is refunded the reward pool minus the lottery tax.

V. DISCUSSION

From these evaluations, we can see that our protocol holds
a lot of promise with our approach to decentralized federated

Fig. 5: Token Supply When All Trainer and Validator Nodes
are Malicious (Section IV-D)

learning. Specifically, we can see the effectiveness of the
following innovations:

• Dual-Layered Validation: While a single decentral-
ized validation layer avoids single points of failure, the
validation mechanisms still run risks like collusion as
seen in section IV-D. Adding additional redundancy to
the validation mechanisms via a second validation layer
enables a layer of security that was previously unachiev-
able while further decentralizing the validation process.
By designing this second validation layer to compete
for a lottery prize along with self-accountability (i.e.,
challengers can challenge other challengers), we limit
intentional malicious behavior that might be present in
our validation layers.

• Multi-Part Token Reward Function: As mentioned in
section III-B, the trainer reward function is partially based
on their stake in the training job and their performance.
This reward function is important to the success of the



protocol because it enables the protocol to give rewards
based on a multitude of factors and scales these factors
based on their importance. This is clearly seen in the
Figure 2 where there are trainers that end the simulation
with higher token counts despite completing the same
training jobs due to performance and stakes. Without
this reward function, there is a lack of incentive to stake
tokens to the protocol or attempt to train a better model.

• Mixed Governance Mechanisms: Throughout our val-
idation mechanisms, we used a mixture of quorum vot-
ing (for validators) and super-majorities (through chal-
lengers). This provides us flexibility on assigning impor-
tance to specific events. For example, challengers require
a super-majority because they are the last line of defense
while validators require a quorum vote from a subset
of validators because validating a single model does not
require the entire computational effort of all validators on
the network.

With this approach to federated learning, we also recognize
some limitations:

• Deterministic Events: We currently rely on generalized
evaluation and training jobs that may produce two differ-
ent results when run in the same way. This may cause
variations in the training job or evaluation job results.

• Cost: Currently our protocol makes hundreds of trans-
actions across all nodes to the blockchain. When a
transaction occurs, a transaction fee known as gas also
occurs [17]. Depending on blockchain, this could cost a
few dollars to hundreds of dollars per training job we
execute.

VI. CONCLUSION AND FUTURE WORK

We propose a protocol for decentralized federated learning
that introduces novel approaches to incentivization, penaliza-
tion, and validation. Through diverse simulations, show that
our mechanisms are able to correctly identify malicious and
benevolent nodes in a network and punish or reward them
accordingly. Future work on this protocol may have the goal of
increasing the robustness of this system. This might be through
exploring proof of authority and reputation mechanisms to
choose validators, moving additional protocol logic outside of
the blockchain to the client nodes to reduce transaction costs,
creating a unified machine learning runtime, or using of zero-
knowledge proofs for more deterministic events.

REFERENCES

[1] M. R. Behera, S. Upadhyay, and S. Shetty,
“Federated learning using smart contracts on
blockchains, based on reward driven approach,”
CoRR, vol. abs/2107.10243, 2021. [Online]. Available:
https://arxiv.org/abs/2107.10243

[2] C. Cachin and M. Vukolic, “Blockchain consensus
protocols in the wild,” CoRR, vol. abs/1707.01873, 2017.
[Online]. Available: http://arxiv.org/abs/1707.01873

[3] H. Yu, H.-Y. Chen, S. Lee, S. Vishwanath, X. Zheng,
and C. Julien, “idml: Incentivized decentralized machine
learning,” 2023.

[4] N. Dong, J. Sun, Z. Wang, S. Zhang, and S. Zheng,
“Flock: Defending malicious behaviors in federated
learning with blockchain,” 2022.

[5] W. Zhu, B. Z. H. Zhao, S. Luo, and K. Deng,
“MANDERA: malicious node detection in federated
learning via ranking,” CoRR, vol. abs/2110.11736, 2021.
[Online]. Available: https://arxiv.org/abs/2110.11736

[6] H. Chen, S. A. Asif, J. Park, C. Shen, and
M. Bennis, “Robust blockchained federated learning
with model validation and proof-of-stake inspired
consensus,” CoRR, vol. abs/2101.03300, 2021. [Online].
Available: https://arxiv.org/abs/2101.03300

[7] J. Heiss, E. Grünewald, N. Haimerl, S. Schulte, and
S. Tai, “Advancing blockchain-based federated learning
through verifiable off-chain computations,” 2022.

[8] Z. Xing, Z. Zhang, M. Li, J. Liu, L. Zhu, G. Russello, and
M. R. Asghar, “Zero-knowledge proof-based practical
federated learning on blockchain,” 2023.

[9] X. Tu, K. Zhu, N. C. Luong, D. Niyato, Y. Zhang,
and J. Li, “Incentive mechanisms for federated learning:
From economic and game theoretic perspective,”
CoRR, vol. abs/2111.11850, 2021. [Online]. Available:
https://arxiv.org/abs/2111.11850

[10] H. Zhu, Z. Li, D. Zhong, C. Li, and Y. Yuan, “Shapley-
value-based contribution evaluation in federated learning:
A survey,” in 2023 IEEE 3rd International Conference
on Digital Twins and Parallel Intelligence (DTPI), 2023,
pp. 1–5.

[11] A. B. Mansour, G. Carenini, A. Duplessis, and D. Nac-
cache, “Federated learning aggregation: New robust al-
gorithms with guarantees,” 2022.

[12] K. D. Pandl, F. Leiser, S. Thiebes, and A. Sunyaev, “Re-
ward systems for trustworthy medical federated learn-
ing,” 2023.

[13] Y. Jo and C. Park, “Blocklot: Blockchain based verifiable
lottery,” 2019.

[14] S. Vani, M. Doshi, A. Nanavati, and A. Kundu, “Vulner-
ability analysis of smart contracts,” 2022.

[15] Y. Sun, Q. Qu, C. Zhao, A. Krishnamurthy, H. Chang,
and Y. Xiong, “Tsor: Tcp socket over rdma container
network for cloud native computing,” 2023.

[16] B. Dowling, P. Rösler, and J. Schwenk, “Flexible
authenticated and confidential channel establishment
(facce): Analyzing the noise protocol framework,”
Cryptology ePrint Archive, Paper 2019/436, 2019,
https://eprint.iacr.org/2019/436. [Online]. Available:
https://eprint.iacr.org/2019/436

[17] S. Farokhnia, “Lazy contracts: Alleviating high gas costs
by secure and trustless off-chain execution of smart
contracts,” 2023.


