
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scatter Protocol: An Incentivized and Trustless Protocol for
Decentralized Federated Learning

ABSTRACT
Federated Learning is a form of privacy-preserving machine learn-
ing where multiple entities train local models which are then ag-
gregated into a global model. Current forms of federated learning
rely on a centralized server to orchestrate the process, leading to
issues such as requiring trust in the orchestrator, the necessity of
a middleman, and a single point of failure. Blockchains provide
a way to record information on a transparent, distributed ledger
accessible and verifiable by any entity. We leverage these proper-
ties of blockchains to produce a decentralized, federated learning
marketplace-style protocol for training models collaboratively. Our
core contributions are as follows: first, we introduce novel staking,
incentivization, and penalization mechanisms to deter malicious
nodes and encourage benign behavior. Second, we introduce a dual-
faceted lottery-based validation layer to ensure the authenticity of
the models trained. Third, we test different components of our sys-
tem to verify sufficient incentivization, penalization, and resistance
to malicious attacks.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; Ma-
chine learning; • Security and privacy→ Distributed systems
security; Trust frameworks.

KEYWORDS
Blockchains, Distributed Systems, Federated Learning, Smart Con-
tracts, Ethereum, Tokenization
ACM Reference Format:
. 2023. Scatter Protocol: An Incentivized and Trustless Protocol for De-
centralized Federated Learning. In . ACM, New York, NY, USA, 11 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
With the rise of artificial intelligence - particularly through founda-
tion models - researchers, companies, and other entities alike have
become increasingly reliant on data and compute power. One way
to extend the limits of the amount of data and compute that can be
used for training models is through federated learning. Federated
learning is a form of collaborative machine learning where multiple
entities aggregate locally trained weights into one global model.
With federated learning, models are trained with data privacy in
mind - this means that each entity has a local dataset that is not

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
, ,
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

exposed to the rest of the participants, which is used to train the
model. Current approaches with federated learning require a cen-
tralized authority to orchestrate the process and validate the model.
Centralized federated learning results in local entities needing to be
able to trust a single authority to ensure the validity of the process
(i.e. models are trained properly, models are aggregated properly,
etc.), introducing inefficiencies. This causes three issues:

• A necessity of a root of trust, which, in turn, inhibits fed-
erated learning from being used across entities who do not
trust each other

• A single point of decision-making that is prone to failure or
malicious acting

• A lack of incentives to participate in federated learning due
to the aforementioned shortcomings.

A common alternative approach to centralized federated learning is
decentralized federated learning. Decentralized federated learning
is when a system of nodes are able to coordinate themselves to
obtain a global model without the help of a middleman or orches-
trator. The process of decentralized federated learning can be done
in many ways.

We propose a blockchain-based protocol for decentralized fed-
erated learning that integrates smart contracts into the federated
learning process to create a trustless environment while incorporat-
ing decentralized validation and incentivization layers. Our system
has four primary roles: requesters, trainers, validators, and chal-
lengers. The high-level overview of our system works as follows:
first, requesters will request a specific model to be trained by pub-
lishing a training job. Next trainers agree to train a model based on
the data they have. After, all the trainers have trained a model or
the training job terminates, validators will validate the model via a
consensus using a validation job published by requesters. Finally,
challengers can challenge nodes that may conduct fraudulent ac-
tions during the federated learning process. Each role has associated
tokenomics - a general term referring to economic systems revolv-
ing around a token - via staking, taxes, and lottery mechanisms,
which incentivizes all network participants to act benevolently. We
publish data to the blockchain via smart contracts to act as the
unified source of truth for all the transactions that occur on our
network.

This work serves as a cornerstone for the future of federated
learning because it eliminates many of the inefficiencies associated
with centralized federated learning. More specifically, our contribu-
tions to eliminating issues with federated learning are as follows:

• We eliminate the necessity of trust, middlemen, and a single
point of decision making to instead rely on a distributed
quorum based voting mechanism to facilitate the process of
federated learning

• We introduce multiple layers of decentralized validation -
first through validators, and second through challengers - to
determine whether transactions and nodes on our protocol

2024-05-20 19:18. Page 1 of 1–11.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

, ,

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

are valid, reinforcing the protocol’s ability enable authentic
federated learning

• We implement a tokenomics system that takes advantage of
staking, tax, and lottery mechanisms to reward participating
nodes in the network based on performance, minimizing
malicious behaviors in federated learning

2 RELATEDWORKS
Federated learning is currently an active area of research due to its
benefits in multiple realms including privacy, decentralized com-
pute and data, and model aggregation. For this work, we look at
five primary areas of related work (1) blockchains and smart con-
tracts, (2) voting and decision making mechanisms, (3) malicious
node detection, (4) model validation, and (5) federated learning
evaluation.

2.1 Blockchains and Smart Contracts
Smart contracts are pieces of code that can be executed on a blockchain.
Both smart contracts and blockchains are completely transparent,
permissionless, and verifiable by any entity. We leverage these
properties to implement our incentivization, validation, and voting
mechanisms.

Prior works explore the idea of applying blockchains and smart
contracts for decentralized federated learning infrastructure. Work
by Behera et al. explored how we could use smart contracts to
address challenges such as model validation, transaction trans-
parency, and model leaks. To address incentivization, they intro-
duced the idea of using blockchain-native tokens to reward nodes
based on performance [1]. Blockchain-native tokens governed by
smart contracts enable easily implementing incentivization mecha-
nisms while presenting a deterministic and permissionless method
to distribute tokens (as defined by the smart contract). Their work
with incentivization schemes is further substantiated by Cachin et
al. and Haoxiang et al., who also conceptualized alternate decen-
tralized, federated learning systems with a focus of incentivization
[3][21].

Complete transparency in a blockchain based system also means
a lack of privacy with transaction data (i.e. datasets, models, etc.).
Behera et al. utilized common cryptography algorithms like RSA
to mask private data in public transactions on the ledger[1]. This
enabled them to communicate model weights in an encrypted man-
ner while keeping the transaction itself public. This ensured that
peer nodes could not view the model it was only available to the
aggregation server.

2.2 Voting and Decision Making Mechanisms
In collaborative protocols, voting and decision making mechanisms
play a large role in decentralized governance. We leverage decen-
tralized governance to make decisions about the authenticity of
specific transactions within our protocol (i.e., whether a model was
trained properly, validated properly, etc.).

Works by Fritsch et al. and Li et al. explore liquid democracy - a
form of decentralized governance -which is seen throughDelegated-
Proof-of-Stake based blockchains and decentralized autonomous
organizations. In a liquid democracy, users can delegate their voting
power to other users or vote directly on specific decisions, resulting

in higher voter engagement [9][15]. However, liquid democracy sac-
rifices decentralization and security. For instance, the most rational
action for entities with small amounts of voting power would be to
delegate it all to one entity, leading to pools of concentrated voting
power. Furthermore, rich entities can create pseudo-identities by
running multiple nodes with high stakes - leading to weak iden-
tity management [13]. Lalley et al. explores quadratic price voting
- an alternative to liquid democracies - where instead of entities
delegating votes, votes can be bought. However, the price of votes
increases quadratically with each additional vote. Quadratic voting
allows participants to compare the marginal cost of an additional
vote against the perceived chance it will be able to swing a decision
[14]. This alleviates some of the concerns associated with decentral-
ization because participants are not incentivized to buy an infinite
amount of votes.

Work by Joshi has studied Proof of Authority for decision mak-
ing. Proof of Authority a permissioned consensus mechanism that
attempts to make decisions based on a set of authorized validators.
It relies on reputation mechanisms as a form of incentivization for
nodes to make the best decisions for the protocol. However, it also
requires some loss of decentralization because of its permissioned
nature and security due to the identity of validators being public,
potentially causing third party manipulation [12].

2.3 Malicious Node Detection
In decentralized systems, malicious actors are inevitable. Being able
to identify and punish malicious actors in the context of federated
learning is central to the success of the protocol. Having malicious
node detection mechanisms in place will disincentivize malicious
actions.

Prior work by Nanqing et al. explores the idea of malicious
node detection by utilizing a voting mechanism and proof-of-stake
mechanisms as insurance against malicious nodes [5]. Their works
leverage the ideas from aforementioned voting mechanisms to
ensure malicious nodes are voted out and the network stays as
malicious-free as possible.

On the other hand, Zhu et al. work on malicious node detection
deterministically by converting the gradient space into a ranking
matrix. From this, they calculate the mean and standard deviations
of the ranking matrix and apply a K-means clustering algorithm to
predict where the benign and malicious cluster nodes are (with the
assumption that the largest cluster consists of benign nodes) [22].

2.4 Model Validation
With decentralized learning, being able to ensure that the models
that were trained are valid is necessary for adoption. To do this, we
can utilize model validation mechanisms to determine a model’s
legitimacy and, as a result, punish or incentivize a specific node.

Research by Chen et al. introduces a framework for decentralized
model validation via voting mechanisms [4]. This framework works
by having validators perform one epoch of local training on the
global model. The test dataset is run through these models and the
accuracies of the global and local models are compared to see if
the difference in accuracies is below a specific threshold. A vote is
then cast by the validators on whether a model has been distorted.

2024-05-20 19:18. Page 2 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scatter Protocol: An Incentivized and Trustless Protocol for Decentralized Federated Learning , ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

By leveraging consensus, decentralized systems can maintain a
trustless state while adding a robust validation layer.

Another approach to model validation was taken with zero-
knowledge proofs - a mechanism that enables an entity to prove a
statement without revealing any additional information informa-
tion, an approach commonly used with privacy-centered systems.
Work by Heiss et al. and Xing et al. both leverage zero knowledge
proofs to which entailed being able to create arithmetic circuits (a
set of constraints that prove a computation was carried out cor-
rectly) to prove that a model that was trained in a valid way [10][20].
They note there are some bottlenecks to be considered with the
size and computational power required to create zero-knowledge
proofs. However, zero-knowledge proofs provide a deterministic
and easily verifiable computation to prove a model’s validity.

2.5 Federated Learning Evaluation
Evaluating decentralized systems is an important active area of
research to us assess whether components of a system perform as
intended while still performing their end goal.

Research from Beltrán et al. and Dong et al. touch on these met-
rics that evaluate various components of their decentralized system.
They assess the networking topology by measuring network ca-
pacity (i.e., latency, throughput, up-time, bandwidth, jitter, etc.).
Machine learning model performance is measured via common
machine learning model indicators (i.e., loss, accuracy, convergence
time, sensitivity, etc.). Incentivization and penalization schemes
were measured by tracking token supply over time for malicious
and benevolent nodes. [2][6].

3 PROTOCOL DESIGN
3.1 Protocol Overview
Our work provides an end-to-end protocol and set of rules for incen-
tivization, penalization, validation, and consensus for decentralized
federated learning. Our protocol takes the format of a marketplace
with four different roles:

• Requester: Requesters are the "buyers" of the marketplace.
They request specific training jobs to be completed and also
provide reward with the training job. The reward has no
lower or upper bound because participation is voluntary
amongst nodes. Instead, we let the market determine the
rewards requesters set - pricing too low will result in a lack
of participation and too high will result in a net negative for
the requester. The training jobs are uploaded to the Inter-
planetary File System - a decentralized storage solution - and
the content ID hashes are published on the blockchain for
nodes to inspect. Requesters also publish an evaluation job
in a similar fashion for validators to run later in the federated
learning process.

• Trainer: Trainers are the core worker nodes and primary
"sellers" of the marketplace. They provide local datasets and
compute power to train local models for the requesters. Due
to the transparent nature of the blockchain, they are able to
inspect any training jobs to determine dataset type, malicious
code, etc. to determine whether they want to join a training
job. Trainers can also inspect the evaluation jobs to ensure

that the job does not maliciously mark a model they have
trained as invalid.

• Validator: Validators are the first layer of validation in the
protocol. Their role is to take models trained by trainers and
determine the validity of the models. They do this by running
an evaluation job (also provider by requesters) on an evalua-
tion dataset and publishing the results of the evaluation job
in the form of a score.

• Challenger: Challengers are the final layer of validation
before a training job is complete. Challengers can challenge
any part of the process which can be checking whether a
model is valid, whether a validation is valid, and even can
challenge other challenger nodes who may publish incor-
rect challenges. Essentially, their role is to generally check
whether any node participating in the protocol is malicious.
This is generally done through simulating different transac-
tions or operations but the implementation and algorithms
are open-ended and specific implementation details are left
to the node client. In order for a challenge to be successful,
the challenger must gain consensus with other challenger
nodes on whether the challenged node is malicious.

In essence, our protocol’s general workflow can be simplified
down into eight steps:

(1) Requesters interact with the blockchain by publishing a train-
ing job and evaluation job for a specific topic (topic repre-
senting what they want the model to do - i.e., a classification
model for numbers).

(2) Trainer jobs read the topics on the blockchain and inspect the
jobs. If they see a topic they can complete, they can choose
to subscribe to it.

(3) A requester can choose to kick off the training job at anytime
before a time threshold (a fixed predetermined time set by
our protocol). After the time threshold has passed, any node
in the network can kick off the training job. This emits an
event indicating trainers to start training.

(4) Once a trainer has completed its training job, it encrypts the
model data and publishes the models to the Interplanetary
File System for validators to inspect

(5) Once all trainers have published a model, the validators
will start validating the models and publish scores to the
blockchain. To decrypt the models, the validators request a
decryption key from the trainers.

(6) After validations have occurred, challengers can analyze
node behavior data to determine whether there were any
malicious nodes and publish these results.

(7) The protocol will then distribute rewards based on the per-
formance and behaviors of nodes (as outlined in 3.2)

(8) The requester reads model data from the blockchain and
aggregates them into one model. The responsibility of model
aggregation is left to the requester because it was the initial
purchaser of the locally trained models. Also, because of this,
the aggregation algorithm of choice (i.e. FedAvg, FedSoftBet-
ter, FedWorse, etc.) is left to the requester [16].

2024-05-20 19:18. Page 3 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

, ,

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Incentivization and Penalization
The protocol defines different incentivization and penalization rules
for each role as well as protocol-wide rules to maximize security
and benevolent behavior while minimizing malevolent behavior.

To implement incentivization and penalization mechanisms, we
use EthereumRequest for Comment-20 (ERC-20) tokens - a standard
in Ethereum that enables us to make our own token systems - to
implement a protocol currency: scatter tokens. The total supply
of our scatter tokens is set to 𝑁 . Each training job transaction on
the network has a tax rate set at 𝐷𝑡𝑥 . The transactions build a
token pool to be used in other areas of the protocol. We also have
distribution rates for both trainers, 𝐷𝑡𝑟 and validators, 𝐷𝑣 that
specify the proportion of a training job’s reward pool that goes to
trainers and validators. We can summarize the rates as follows:

𝐷𝑡𝑥 + 𝐷𝑡𝑟 + 𝐷𝑣 = 1 (1)

Requesters on the network are subject to two rules. First re-
questers must provide some reward for each training job they create.
If we denote the reward pool to be 𝑅𝑝 , the amount of reward taken
as tax to be 𝑅𝑡𝑥 , the rewards given to trainers as 𝑅𝑡𝑟 and rewards
given to validators as 𝑅𝑣 , the total reward pool can be represented
as:

𝑅𝑝 = 𝑅𝑡𝑥 + 𝑅𝑡𝑟 + 𝑅𝑣 (2)
We have also established that the protocol takes on a 𝐷𝑡𝑥 tax rate
and we can represent the tax amount as follows:

𝑅𝑡𝑥 = 𝑅𝑝 · 𝐷𝑡𝑥 (3)

Secondly, if a requester is found to be malicious, the reward that
they have allocated is equally distributed amongst training job par-
ticipants with no returns. The protocol is designed so that rewards
that have been offered to participants cannot be withdrawn which
ensures that requesters do not withdraw offered rewards in the
case that they are found malicious.

Finally requesters are given some security assurance in the sce-
nario that trainers and/or validators do not fulfill their roles. In
the scenario that 100 percent of trainers and 100 percent of val-
idators are found to be malicious, then requesters get a complete
refund on their training job transaction (with the exception of the
protocol-wide tax).

The tokenomics of trainers introduces a system that encourages
proper training of models. To participate in a training job, trainers
are required to stake - a mechanism commonly used in blockchains
where tokens are locked into the protocol as collateral for additional
privileges - any amount of tokens. The unbonding period - the pe-
riod of time an entity must wait before being able to unstake tokens
from the protocol - of the tokens is the lifetime of the training job
(as long as the training job is active the tokens cannot be unstaked).
In the scenario where a trainer is found to be malicious, they lose all
tokens that they have staked. By introducing a short term staking
mechanism for trainers, we achieve two things: 1) trainers are now
risking tokens and therefore are more incentivized to train better
models and 2) we can reward trainers accordingly based on how
much stake they have decided to dedicate to a specific training job.

For our reward function, given a pool of trainers𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑘 }
we can define𝑊 𝑡

𝑠𝑡 𝑗
as the stake amount for the 𝑗𝑡ℎ trainer node

and𝑊 𝑡
𝑠𝑐 𝑗

for the average validation score of the 𝑗𝑡ℎ trainer node (as

determined from the validators). We can define the reward function
for a trainer 𝑖 , 𝑅𝑡𝑖 , as follows:

𝑅𝑡𝑖 =

√︃
𝑊 𝑡

𝑠𝑡𝑖
·𝑊 𝑡

𝑠𝑐𝑖
2∑𝑘

𝑗=1

√︃
𝑊 𝑡

𝑠𝑡 𝑗
·𝑊 𝑡

𝑠𝑐 𝑗
2
· 𝑅𝑡𝑟 (4)

We can decompose this reward function into two parts. The first part
calculates the proportion of the reward pool allocated to trainers
that should go to trainer 𝑖 . We do this by calculating a reward
score which is the product of the square root of the stake amount
and the square of the average validation score (

√︃
𝑊 𝑡

𝑠𝑡𝑖
·𝑊 𝑡

𝑠𝑐𝑖
2) and

dividing it by the sum of all reward scores. The two factors that are
taken into the reward score ensure there is incentive for trainers
to both stake tokens into a specific training job as well as train a
valid model. We square root the stake to avoid a scenario where
trainers with large amounts of stake do not completely dominate
the distribution of the rewards, leaving a disproportionately small
amount of rewards for the remainder of the trainers. This ensures
diminishing marginal returns, especially as stake amounts become
increasingly larger. We also take a partially achievement-based
approach to our reward function as well by squaring the average
validation score to more heavily weigh trainer performance [17].
By squaring the validation score, nodes receive increasing marginal
returns from focusing on better performance. The second part of
our reward function calculates the amount of the reward pool that
should go to trainers (𝑅𝑡𝑟 ). We can express as a product of the
reward pool and the trainer distribution rate:

𝑅𝑡𝑟 = 𝑅𝑝 · 𝐷𝑡𝑟 (5)

Validators are subject to a long-term staking requirement of 𝑆𝑣
tokens. These tokens have an unbonding period for a protocol-
specified time period of 𝜏𝑣 . Validators can either validate models
correctly or incorrectly. For our reward function, given a pool
of validators, 𝑉 = {𝑣1, 𝑣2 . . . 𝑣𝑘 }, we can define the stakes for an
arbitrary validator, 𝑖 , to be𝑊 𝑣

𝑠𝑡𝑖
. We define our reward function for

validator 𝑖 , 𝑅𝑣𝑖 , as follows:

𝑅𝑣𝑖 =
𝑊 𝑣

𝑠𝑡𝑖∑𝑘
𝑗=1𝑊

𝑣
𝑠𝑡 𝑗

· 𝑅𝑣 (6)

This reward function is entirely based on stakes. Because each val-
idator performs the same amount of work, there is no performance
factor like there was in the trainer reward function. By keeping the
reward function entirely based on stakes, it encourages validators
to stake more tokens to support the protocol. Similar to the trainers,
this reward function calculates a proportion of the total reward
pool for validators (𝑅𝑣 ) to give out. We can express as follows:

𝑅𝑣 = 𝐷𝑣 · 𝑅𝑝 (7)

Because validators can also be malicious, we design a penalization
function that penalizes validators based on number of previous
penalties. Given a validator, 𝑖 , with a stake amount of 𝑆 , we define a
base penalty, 𝑃𝑏 , a penalty multiplier 𝑃𝑚 , and the penalty count of
this specific validator as 𝑃𝑐 . We calculate the penalty for validator
𝑖 , 𝑃𝑣𝑖 , as follows:

𝑃𝑣𝑖 =

{
𝑃𝑏 · 𝑃𝑚𝑃𝑐 , if 𝑃𝑏 · 𝑃𝑚𝑃𝑐 ≤ 𝑆

𝑆, if 𝑃𝑏 · 𝑃𝑚𝑃𝑐 > 𝑆

}
(8)

2024-05-20 19:18. Page 4 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scatter Protocol: An Incentivized and Trustless Protocol for Decentralized Federated Learning , ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Protocol Tokenomics Parameters

Paramter
Name

Paramter
Symbol

Parameter
Value

Token Supply 𝑁 100 Billion Tokens
Tax Rate 𝐷𝑡𝑥 0.10 (10%)

Trainer Reward Rate 𝐷𝑡𝑟 0.70 (70%)
Validator Reward Rate 𝐷𝑣 0.20 (20%)

Validator Staking Requirement 𝑆𝑣 25000 Tokens
Validator Unbonding Period 𝜏𝑣 30 Days

Challenger Staking Requirement 𝑆𝑐 20000 Tokens
Challenger Unbonding Period 𝜏𝑐 30 Days

Base Penalty 𝑃𝑏 200 Tokens
Penalty Multiplier 𝑃𝑚 2

This function discourages subsequent malicious behaviors by val-
idators by introducing increasing marginal costs for each additional
malicious behavior committed. When a validator’s stake reaches
zero, it automatically loses validator privileges.

Challengers, like validators, are also subject to a long-term stak-
ing requirement of 𝑆𝑐 . These tokens have an unbonding period for
a protocol-wide specified time of 𝜏𝑐 . Challengers do not receive
rewards for each transaction they challenge. Instead, all challengers
are racing to compete for a lottery (which is accumulated from
the taxes collected). On a successful challenge, the challenger will
receive the tokens from the lottery. Challengers can also be chal-
lenged themselves - in this scenario, challengers follow the same
penalty function imposed on validators in equation 8.

We define the parameters for our protocol’s incentivization
scheme. Our implementation of the protocol sets the parameter
values as defined in Table 1.

3.3 Smart Contract Architecture
Our protocol consists of seven different smart contracts that define
the behavior of the system. The first smart contract we created was
a training job token contract. The training job token contract is an
ERC-721 contract standard (a contract standard for non-fungible
tokens) that defines the logic around handling different training
jobs. This contract creates an immutable token representing the
training job. The token contains a reference to the training job
details (the content ID of the training job) stored in the Interplane-
tary File System. This allows the protocol to declare that a specific
node has ownership over a training job, allowing enabling better
observability of the different training jobs available.

The next contract we have is a model token contract. This con-
tract is another ERC-721 based contract that defines the logic for
models and their ownership. Similar to the training job token con-
tract, this contract creates a token representing each submitted
model and attributes it to the respective trainer for better observ-
ability over the different models trained. Additionally, this contract
contains logging capabilities that allows other parts of the protocol
to see which trainers have and have not submitted models for a
specific training job.

We implement an evaluation job contract to manage an evalu-
ation job. Like the model token and training job token contracts,

this is an ERC-721 contract that defines ownership of the different
evaluation jobs. Additionally, evaluations jobs have two different
parts to them: the job portion and the associated dataset. When
initially publishing a training job and its respective evaluation job,
requesters only publish the job portion so that trainers cannot
exploit the evaluation dataset and train the model on the dataset
itself. Because of this, this smart contract provides functionality to
publish an evaluation dataset later down the road and associate it
with the previously published evaluation job token.

The protocol contains a reputation manager contract which is a
smart contract used to determine benevolent and malicious nodes
in the network for a specific training job (i.e., this reputation is not
globally persistent across all training jobs). The reputation manager
is used in other areas in the protocol to determine whether a spe-
cific node should be rewarded or penalized based on the schemes
presented in 3.2.

We introduce a governance mechanism through the vote man-
ager smart contract. This contract facilitates the validation process
for models submitted by trainers. Validators utilize this contract to
participate in the voting process by submitting scores after running
the validation job on each model. The contract contains logic to
make a decision on whether a model is valid after votes are submit-
ted. more details on the specifics of the voting and decision making
mechanism can be found in 3.4 This contract also enables validators
to flag a specific evaluation job as malicious and refrain from the
voting process.

We implement our incentivization layer using an ERC-20 con-
tract standard (a contract standard for fungible tokens which en-
ables protocol-specific currencies) with our scatter token contract.
The scatter token contract provides functionality for nodes to stake
tokens, both short-term for trainers and long-term for validators
and challengers. It also implements the reward and penalization
logic for all nodes as specified in 3.2. Finally, it contains the logic
that manages protocol-wide requirements like the tokenomics pa-
rameters specified in Table 1.

The final contract we implement is the scatter protocol contract
which is the main entry-point and interface for nodes to interact
with the protocol. It contains actions like creating training jobs for
requesters, joining training jobs for trainers, challenging transac-
tions, etc. It integrates with all the other protocol contracts into
a unified transaction layer - in essence, all transactions to other
contracts are proxied through the scatter protocol contract.

Figure 1 illustrates the different smart contract and their interac-
tions with one another.

3.4 Model Validation and Consensus
Our protocol implements a validation layer through validators.
Validators rely on governance (via voting) to determine whether
specific models are valid or invalid. How this validation layer works
is that each job will have a proportion of the validators, 𝑉𝑝𝑟𝑜𝑝 as-
signed to each training job. These validators are randomly chosen
through the smart contract which leverages the Fisher-Yates shuffle
algorithm along with block timestamp, difficulty, and a random
nonce for a degree of stochasticity, preventing entities from consis-
tently validating their own jobs by running multiple nodes [11].

2024-05-20 19:18. Page 5 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

, ,

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 1: This figure illustrates the smart contract architecture and how each smart contract interacts with one another.

Once the models are ready for validation for the validators, the
smart contract emits an event indicating that all models have been
uploaded and the validators can start validating models with the
given evaluation job and submitting evaluation scores. The evalua-
tion job comes with an associated evaluation dataset (also provided
by the requester). This dataset is published after the trainers have
submitted their models to prevent trainers from exploiting the
evaluation job by training their models directly on the evaluation
dataset.

We allow validators to continue to submit scores until aminimum
number of validators have voted, 𝑄𝑐 (this is the quorum count).
Once the quorum count has been reached, the average score for
each model is calculated and if it is above the validation threshold
(set by the requester when submitting a job), then it is accepted,
else rejected.

Another area where validators rely on consensus is when a re-
quester submits a malicious evaluation job (i.e., the evaluation job
contains code that is deemed malicious). In this scenario, the valida-
tor can refrain from conducting an evaluation. If a super-majority
of validators (two-thirds) refrain from validating, then all valida-
tors are compensated. Otherwise validators that refrain without a
super-majority, are neither rewarded nor punished. Validators are
given ultimate authority to determine whether a requester is mali-
cious because validators are chosen at random for each training job.
Therefore validators could be a target for malicious training jobs
from requesters to avoid having to pay a portion of the rewards out
as seen in the scenario in section 4.4. Trainers on the other hand
do not have this authority because trainers can see all training jobs
before they commit to them. Therefore, before a trainer commits
to a training job, they can evaluate for themselves whether it is
malicious or not and act in their best interests.

Our secondary validation layer with challengers leverages a
different governance mechanism to achieve consensus - when a
challenger decides it would like to challenge the results of anode,
all challengers are signaled to vote on whether a node is fraudu-
lent (a binary yes or no decision). In order for a challenge to to

be accepted, at least two-thirds of challengers must reach a con-
sensus on the decision. Because challengers are the last line of
defense before a training job reaches finality and challengers have
the highest earning potential if a challenge is successful, we require
a supermajority.

3.5 Client Node Architecture
We provide a client node that participants can run to interact with
the protocol and run training jobs from the protocol. Our client
node has the following components:

• HTTP Server: The HTTP server is the main entry-point to
interact with the node. There are various endpoints that en-
able network participants take actions like creating a training
job, viewing all the available training jobs, getting scatter to-
ken balance, and starting the training procedure for a specific
training job. The HTTP server has handlers which interact
with the blockchain when a transaction needs to occur.

• Peer-to-Peer Server: The peer to peer server is used for
inter-peer communication. Because the blockchain is amedium
of completely transparent and public exchange, it is difficult
to share private information directly. We use a peer-to-peer
server to facilitate communication for private information.
This primarily takes the form of communicating AES keys
to nodes directly to decrypt data on-chain - we expand on
how we use our peer-to-peer server in 3.6.

• Asynchronous Job Queue: We anticipate trainer nodes to
subscribe to multiple training jobs at once. To ensure there
is not an excessive number of training jobs occurring at once
which may overwhelm the system the node is running on,
we created an asynchronous job queue that executes training
jobs from a job pool, allowing for better scalability. Currently,
the workers pull from the pool in a first-in, first-out manner;
however, the order in which they pull from the pool and
execute the jobs can be customized and is up to the node
operator.

2024-05-20 19:18. Page 6 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Scatter Protocol: An Incentivized and Trustless Protocol for Decentralized Federated Learning , ,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

• Protocol Event Listeners:The smart contracts emit various
events such as models are ready to validate, training has
been initialized, etc. For these events, nodes need to react in
a specific ways so we provide an event listener module that
listens to events emitted from the blockchain and conducts
an action accordingly.

• Datastore: Our node relies on a datastore to handle meta-
data information during different transactions. This includes
things like saving training job or evaluation job information
to reference in later parts of the federated learning process.
We use PostgreSQL for our datastore.

Figure 2: Node Architecture of Scatter Protocol Node

Figure 2 is a high level overview of the client node architecture.
This is just one implementation of a potential client node - the
permissionless nature of the protocol enables anyone to create their
own client node implementation and interact with the protocol
directly.

3.6 Security
Security in our system is introduced both at the protocol level as
well as the node level.

At the protocol level, we leverage our incentivization and pe-
nalization mechanisms as outlined in 3.2 to discourage malevolent
behavior like publishing malicious training jobs. Our smart contract
also accounts for common smart contract attacks like reentrancy
attacks and overflow/underflow attacks [19].

At the client node level, we enforce security through three chan-
nels: training job runtime, data, and peer communication. For our
training job runtime environment, we rely on Docker containers
which provides a level of isolation with each container having its
own file-system, process space, and network interface. We also
leverage the Open Container Initiative (OCI) runtime through gVi-
sor which provides a seperate operating system kernel and virtual
machine monitor. It intercepts system calls, enabling greater isola-
tion between the application and the host operating system [18].

We also implement encryption standards that are utilized both at
the protocol and client-node level. Specifically, we encrypt models
that are published to the blockchain using Advanced Encryption
Standard-256 (AES-256). We do this because this protocol is asyn-
chronous in nature which means that trainers can publish their

Table 2: Simulation Parameters

Paramter
Name

Parameter
Value

Requester Node Count 1 Node
Trainer Node Count 6 Nodes
Validator Node Count 3 Nodes
Challenger Node Count 2 Nodes

Number of Training Jobs Completed 10 Jobs
Initial Token Supply (Per Node) 100000 Tokens

models at different times. In the case that one trainer publishes their
model before another, the one that has not published the model
would be able to publish the other trainer’s model without doing
the computational work to train a new model. To prevent this, we
encrypt the model using AES encryption. When the validator is
ready to evaluate a model, they request the decryption key via
the peer-to-peer server and decrypt the encrypted model before
validating it. If the trainer does not provide a valid decryption key,
the validator can mark the trainer as malicious. In doing this, we
are both able to ensure that the trainer is training their own models
while still being able to publish a model publicly (albeit it being
encrypted).

Another security concern arises with communicating the de-
cryption key over the peer-to-peer server. We leverage the Noise
Protocol framework via the LibP2P library which enables us to
create secure and authenticated channels of communication be-
tween two peers [7]. This ensures that we can securely share the
decryption key with other peers.

4 EVALUATION AND RESULTS
To evaluate our system, we focused on simulating different scenar-
ios to determine how the tokenomics and protocol logic behaved.
To evaluate these, we run simulations on a custom built simulation
software which allows us to run and control the actions of nodes.
We leveraged Hardhat network, a local blockchain development
tool to run on-chain transactions. For our simulations, we con-
sider five different scenarios. For each scenario, our simulation has
the parameters specified in Table 2. The number of malicious and
benevolent nodes varies from simulation to simulation.

4.1 All Benevolent Nodes
Our first scenario is when all trainers and validators are benevolent.
Figure 3 illustrates the token supplies for the trainers, validators,
and challengers. For trainers, we notice throughout the life-cycle
of the simulation, trainers periodically lose some amount of token
supply. This is due to the short-term stake on a training job basis
that was described in section 3.2 which is returned to them at the
end of the training job. We notice that ultimately because of the
consistently benign behavior, trainers do make a profit as at the
end of the simulation, their token supply is above the initial token
supply. With the validators, we initially see a large drop off due to
the required stake to become a validator but after that, the validators
slowly accumulate tokens, also demonstrating profitability from
the validator standpoint. Finally, with challengers, we see that there

2024-05-20 19:18. Page 7 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

, ,

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

is an initial drop off due to the stake (similar to validators) but there
is no increase in token supply because all nodes are acting correctly
and hence there is no opportunity to win the lottery.

Figure 3: Token Supplies for Benevolent Trainers and Validators
(Section 4.1)

Figure 4: Token Supplies for Partially Malicious Trainers and
Benevolent Validators (Section 4.2)

4.2 Partially Malicious Trainers
Our second scenario occurs when we have some malicious trainers,
some benevolent trainers, and all benevolent validators. We des-
ignate three of our trainers as malicious and three as benevolent.

We can see the token supplies over time in Figure 4. For this sce-
nario, we notice that the trainers who are not malicious have their
token supply increasing from the rewards of the training job. On
the other hand those who are malicious have their token supply
decreasing because they lose the stake they’ve invested into the
protocol for being malicious. Validators continue to slowly earn
rewards as well as they are still acting as intended. Challengers do
not earn rewards here, even if they help with identifying a node as
malicious because validators are given priority for malicious node
identification and hence generally identify the malicious trainers
first. This ensures challengers do not reap rewards for marking a
trainer as malicious just because a validator does (i.e., a challenger
is required to actually put in computational work to determine the
validity of a trainer).

4.3 Partially Malicious Validators
Our third scenario occurs when we have all benevolent trainers
and some malicious validators, and some benevolent validators. We
designate one of our validators as malicious and two validators as
benevolent. We can see the token supplies over time in Figure 5.
If we look at the trainers, because they are all benevolent, their
token supplies allow a profit over time. With the validators, we
notice that one validator has a stagnant token supply. That is the
malicious validator and has been identified as malicious by the
challengers and therefore does not earn a reward. On the other
hand, the two benevolent validators do continue earning rewards.
The challengers also see an increase in token supply but at a much
steeper rate than any other nodes. This is because challengers are
winning tokens from the lottery mechanism. The challenger that
starts the challenge for a specific node first and is successful is
the winner of the lottery which is also demonstrated in Figure 5.
We also notice that the trainers continue to make a profit despite
the malicious validators. This is attributed to the fact that when
a validator is marked as malicious, their evaluations are omitted
when determining which trainers have acted maliciously.

We also notice that while the fraudulent validator here is not
earning any rewards, it is also not being punished for it. This is
because the punishment is taken out from the validator’s protocol
stake, not the node’s token supply. Figure 6 demonstrates how this
stake decreases exponentially with every subsequent penalty (the
penalty function is defined in section 3.2). Once the stake reaches
zero, that validator loses privileges to evaluate models.

Finally, we can also observe the lottery supply in Figure 7. We
notice that the lottery supply has periodic spikes and the magnitude
of these spikes increase. The lottery is determined by a variety of
factors like protocol taxes, trainers stakes, and validator stakes.
Because the validator stake penalty increases exponentially, the
amount that is transferred to the lottery with each penalty increases
at that same rate. This lottery is then transferred to the challenger
who discovered the malicious validator. This flow from validator to
lottery to challenger is the reason behind the spikes observed.

4.4 Malicious Validators and Trainers
The fourth scenario is when all validators and trainers are malicious.
In figure 8 We notice that in this scenario that challengers are
receiving the maximum profit. The large profits can primarily be

2024-05-20 19:18. Page 8 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Scatter Protocol: An Incentivized and Trustless Protocol for Decentralized Federated Learning , ,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 5: Token Supplies for Partially Malicious Validators and
Benevolent Trainers (Section 4.3)

Figure 6: Stake Amounts for Validators in a Malicious Validator
Scenario (Section 4.3)

associated from two factors 1) lost validator stakes and 2) lost trainer
stake. Because both trainers and validators are losing their stakes
to the lottery for being malicious, this is when challengers are able
to earn the maximum profits while maintaining in the integrity
of the network. We also notice that the requester initially loses a
portion of its token supply that was meant to act as the reward
pool but then recovers most of it. This is because requesters are
returned tokens if 100 percent of validators, 100 percent of trainers
fail, or both. It does not completely recover all tokens due do the

Figure 7: Lottery Supply in a Malicious Validator Scenario (Section
4.3)

lottery tax; however, it does recover the tokens that were originally
allocated for trainer and validator rewards.

Figure 8: Token Supply When All Trainer and Validator Nodes are
Malicious (Section 4.4)

4.5 Malicious Requester
The final scenario we consider is when the requester node is mali-
cious and all other nodes are benevolent. In this scenario, validators
can flag the requester as malicious. This causes two things to hap-
pen: 1) the validators gives every trainer an equal validation score
and 2) a vote to see if there is consensus on whether that requester

2024-05-20 19:18. Page 9 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

, ,

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

is malicious. If a consensus is gained as outlined by section 3.4, then
both the trainers and validators are rewarded irrespective of the
results of the training jobs. This is why in Figure 9, we see both
trainers and validators creating a profit. The cost that the requester
takes on are from the rewards it stakes into the protocol and no
guarantee that the models trained are valid.

Figure 9: Node Token Supply With a Malicious Requester (Section
4.5)

5 DISCUSSION
From these evaluations, we can see that Scatter Protocol holds a
lot of promise to approach decentralized federated learning. Specif-
ically, we can see the effectiveness of the following innovations:

• Dual-Layered Validation: Dual layered validation systems
are invaluable to the success of this protocol. With previ-
ous blockchain-based federated learning systems, validation
stopped with a validator network [21]. While this is an im-
provement from single point of failure systems with central-
ized federated learning systems, the validation mechanisms
still run risks like collusion as seen in section 4.4. Adding
additional redundancy to the validation mechanisms via a
second validation layer enables a layer of security that was
previously unachievable while further decentralizing the
validation process. By designing this second validation layer
to where they are all competing for a lottery prize and with
accountability functionality in this layer (i.e., challengers
can challenge other challengers), we limit collusion or in-
tentional malicious behavior that might be present in our
validation layers.

• Multi-Part Token Reward Function: As mentioned in
section 3.2, the trainer reward function is partially based on
their stake in the training job and their performance. This
reward function is important to the success of the protocol
because it enables the protocol to give rewards based on a

multitude of factors and scales these factors based on the
importance. This is clearly seen in the Figure 3 where there
are trainers that end the simulation with higher token counts
despite completing the same training jobs. This is a direct
result of performing better and/or having higher stakes in
the corresponding training job.Without this reward function,
there is a lack of incentive to stake tokens to the protocol
or attempt to train a robust model (i.e., a trainer could just
stake one token or perform poorly just to get the reward if
the reward did not correspond directly to these factors)

• Mixed Governance Mechanisms: Throughout our valida-
tion mechanisms, we used a mixture of quorum voting (for
validators) and super-majorities (through challengers). This
provides us flexibility on assigning importance to specific
events. For example, challengers require a super-majority be-
cause they are the last line of defense while validators require
a quorum vote from a subset of validators because validating
a single model does not require the entire computational
effort of all validators on the network.

With this approach to federated learning, we also recognize some
limitations:

• Deterministic Events: We currently rely on generalized
evaluation and training jobs that may produce two different
results when run in the same way. This may cause variations
in the training job or evaluation job results.

• Cost:Currently our protocol makes hundreds of transactions
across all nodes to the blockchain.When a transaction occurs,
a transaction fee known as gas also occurs [8]. Depending
on blockchain, this could cost a few dollars to hundreds of
dollars per training job we execute.

6 CONCLUSION AND FUTUREWORK
We propose a protocol for decentralized federated learning that
introduces novel approaches to incentivization, penalization, and
validation. The results of our simulations show that ourmechanisms
are able to correctly identify malicious and benevolent nodes in
a network and punish or reward them accordingly. Additionally,
we demonstrate how each mechanism interacts with a diverse
set of scenarios by evaluating this protocol in scenarios involving
malicious requesters, trainers, and validators.

Future work on this protocol may have the goal of increasing
the robustness of this system. This might be through exploring
proof of authority and reputation mechanisms to choose valida-
tors, moving additional protocol logic outside of the blockchain to
the client nodes to reduce transaction costs, or creating a unified
machine learning runtime or usage of zero-knowledge proofs for
more deterministic events.

REFERENCES
[1] Monik Raj Behera, Sudhir Upadhyay, and Suresh Shetty. 2021. Federated Learning

using Smart Contracts on Blockchains, based on Reward Driven Approach. CoRR
abs/2107.10243 (2021). arXiv:2107.10243 https://arxiv.org/abs/2107.10243

[2] Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez
Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Grego-
rio Martínez Pérez, and Alberto Huertas Celdrán. 2023. Decentralized Fed-
erated Learning: Fundamentals, State of the Art, Frameworks, Trends, and
Challenges. IEEE Communications Surveys Tutorials (2023), 1–1. https:
//doi.org/10.1109/COMST.2023.3315746

2024-05-20 19:18. Page 10 of 1–11.

https://arxiv.org/abs/2107.10243
https://arxiv.org/abs/2107.10243
https://doi.org/10.1109/COMST.2023.3315746
https://doi.org/10.1109/COMST.2023.3315746


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Scatter Protocol: An Incentivized and Trustless Protocol for Decentralized Federated Learning , ,

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[3] Christian Cachin and Marko Vukolic. 2017. Blockchain Consensus Protocols in
the Wild. CoRR abs/1707.01873 (2017). arXiv:1707.01873 http://arxiv.org/abs/
1707.01873

[4] Hang Chen, Syed Ali Asif, Jihong Park, Chien-Chung Shen, and Mehdi Bennis.
2021. Robust Blockchained Federated Learning with Model Validation and Proof-
of-Stake Inspired Consensus. CoRR abs/2101.03300 (2021). arXiv:2101.03300
https://arxiv.org/abs/2101.03300

[5] Nanqing Dong, Jiahao Sun, Zhipeng Wang, Shuoying Zhang, and Shuhao
Zheng. 2022. FLock: Defending Malicious Behaviors in Federated Learning
with Blockchain. arXiv:2211.04344 [cs.CR]

[6] Nanqing Dong, Zhipeng Wang, Jiahao Sun, Michael Kampffmeyer, Yizhe
Wen, Shuoying Zhang, William Knottenbelt, and Eric Xing. 2023. Defend-
ing Against Malicious Behaviors in Federated Learning with Blockchain.
arXiv:2307.00543 [cs.LG]

[7] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. 2019. Flexible Authenticated
and Confidential Channel Establishment (fACCE): Analyzing the Noise Protocol
Framework. Cryptology ePrint Archive, Paper 2019/436. https://eprint.iacr.org/
2019/436 https://eprint.iacr.org/2019/436.

[8] Soroush Farokhnia. 2023. Lazy Contracts: Alleviating High Gas Costs by Secure
and Trustless Off-chain Execution of Smart Contracts. arXiv:2309.11317 [cs.CR]

[9] Robin Fritsch, Marino Müller, and Roger Wattenhofer. 2022. Analyz-
ing Voting Power in Decentralized Governance: Who controls DAOs?
arXiv:2204.01176 [cs.CY]

[10] Jonathan Heiss, Elias Grünewald, Nikolas Haimerl, Stefan Schulte, and Stefan
Tai. 2022. Advancing Blockchain-based Federated Learning through Verifiable
Off-chain Computations. arXiv:2206.11641 [cs.CR]

[11] Yongrae Jo and Chanik Park. 2019. BlockLot: Blockchain based Verifiable Lottery.
arXiv:1912.00642 [cs.DC]

[12] Shashank Joshi. 2021. Feasibility of Proof of Authority as a Consensus Protocol
Model. arXiv:2109.02480 [cs.DC]

[13] Yujin Kwon, Jian Liu, Minjeong Kim, Dawn Song, and Yongdae Kim.
2019. Impossibility of Full Decentralization in Permissionless Blockchains.
arXiv:1905.05158 [cs.CR]

[14] Steven P. Lalley and E. Glen Weyl. 2018. Quadratic Voting: How Mechanism
Design Can Radicalize Democracy. AEA Papers and Proceedings 108 (May 2018),
33–37. https://doi.org/10.1257/pandp.20181002

[15] Chao Li, Runhua Xu, and Li Duan. 2023. Liquid Democracy in DPoS Blockchains.
arXiv:2309.01090 [cs.CR]

[16] Adnan Ben Mansour, Gaia Carenini, Alexandre Duplessis, and David Naccache.
2022. Federated Learning Aggregation: New Robust Algorithms with Guarantees.
arXiv:2205.10864 [stat.ML]

[17] Konstantin D. Pandl, Florian Leiser, Scott Thiebes, and Ali Sunyaev. 2023. Reward
Systems for Trustworthy Medical Federated Learning. arXiv:2205.00470 [cs.LG]

[18] Yulin Sun, Qingming Qu, Chenxingyu Zhao, Arvind Krishnamurthy, Hong Chang,
and Ying Xiong. 2023. TSoR: TCP Socket over RDMA Container Network for
Cloud Native Computing. arXiv:2305.10621 [cs.NI]

[19] S. Vani, M. Doshi, A. Nanavati, and A. Kundu. 2022. Vulnerability Analysis of
Smart Contracts. arXiv:2212.07387 [cs.CR]

[20] Zhibo Xing, Zijian Zhang, Meng Li, Jiamou Liu, Liehuang Zhu, Giovanni Russello,
and Muhammad Rizwan Asghar. 2023. Zero-Knowledge Proof-based Practical
Federated Learning on Blockchain. arXiv:2304.05590 [cs.CR]

[21] Haoxiang Yu, Hsiao-Yuan Chen, Sangsu Lee, Sriram Vishwanath, Xi Zheng, and
Christine Julien. 2023. iDML: Incentivized Decentralized Machine Learning.
arXiv:2304.05354 [cs.LG]

[22] Wanchuang Zhu, Benjamin Zi Hao Zhao, Simon Luo, and Ke Deng. 2021. MAN-
DERA: Malicious Node Detection in Federated Learning via Ranking. CoRR
abs/2110.11736 (2021). arXiv:2110.11736 https://arxiv.org/abs/2110.11736

2024-05-20 19:18. Page 11 of 1–11.

https://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
https://arxiv.org/abs/2101.03300
https://arxiv.org/abs/2101.03300
https://arxiv.org/abs/2211.04344
https://arxiv.org/abs/2307.00543
https://eprint.iacr.org/2019/436
https://eprint.iacr.org/2019/436
https://eprint.iacr.org/2019/436
https://arxiv.org/abs/2309.11317
https://arxiv.org/abs/2204.01176
https://arxiv.org/abs/2206.11641
https://arxiv.org/abs/1912.00642
https://arxiv.org/abs/2109.02480
https://arxiv.org/abs/1905.05158
https://doi.org/10.1257/pandp.20181002
https://arxiv.org/abs/2309.01090
https://arxiv.org/abs/2205.10864
https://arxiv.org/abs/2205.00470
https://arxiv.org/abs/2305.10621
https://arxiv.org/abs/2212.07387
https://arxiv.org/abs/2304.05590
https://arxiv.org/abs/2304.05354
https://arxiv.org/abs/2110.11736
https://arxiv.org/abs/2110.11736

	Abstract
	1 Introduction
	2 Related Works
	2.1 Blockchains and Smart Contracts
	2.2 Voting and Decision Making Mechanisms
	2.3 Malicious Node Detection
	2.4 Model Validation
	2.5 Federated Learning Evaluation

	3 Protocol Design
	3.1 Protocol Overview
	3.2 Incentivization and Penalization
	3.3 Smart Contract Architecture
	3.4 Model Validation and Consensus
	3.5 Client Node Architecture
	3.6 Security

	4 Evaluation and Results
	4.1 All Benevolent Nodes
	4.2 Partially Malicious Trainers
	4.3 Partially Malicious Validators
	4.4 Malicious Validators and Trainers
	4.5 Malicious Requester

	5 Discussion
	6 Conclusion and Future Work
	References

